MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE CAMPOS.


*  ψ      [] /   / c




*  ψ     /  [/      / c


*  ψ      [] /   / c



*  ψ      [] /   / c  .

*  ψ      /   / c /  


  MECÃNICA GRACELI GERAL - QTDRC.



*  ψ         .



equação Graceli dimensional relativista  tensorial quântica de campos 

G* =  =

[  /  IFF ]   * =   /  G   /     .  /

 G  = [DR] =            .+  

+  * =  = [          ] ω   / T] / c [    [x,t] ]  =  


//////

[  /  IFF ]  = INTERAÇÕES DE FORÇAS FUNDAMENTAIS. =

TeoriaInteraçãomediadorMagnitude relativaComportamentoFaixa
CromodinâmicaForça nuclear forteGlúon10411/r71,4 × 10-15 m
EletrodinâmicaForça eletromagnéticaFóton10391/r2infinito
FlavordinâmicaForça nuclear fracaBósons W e Z10291/r5 até 1/r710-18 m
GeometrodinâmicaForça gravitacionalgráviton101/r2infinito

G* =  OPERADOR DE DIMENSÕES DE GRACELI.

DIMENSÕES DE GRACELI SÃO TODA FORMA DE TENSORES, ESTRUTURAS, ENERGIAS, ACOPLAMENTOS, , INTERAÇÕES DE CAMPOS E ENERGIAS, DISTRIBUIÇÕES ELETRÔNICAS, ESTADOS FÍSICOS, ESTADOS QUÂNTICOS, ESTADOS FÍSICOS DE ENERGIAS DE GRACELI,  E OUTROS.

/

  / *=  = [          ] ω           .

 MECÂNICA GRACELI GENERALIZADA - QUÂNTICA TENSORIAL DIMENSIONAL RELATIVISTA DE INTERAÇÕES DE CAMPOS. EM ;


MECÂNICA GRACELI REPRESENTADA POR TRANSFORMADA.



dd = dd [G] = DERIVADA DE DIMENSÕES DE GRACELI.



ψ     [   ] [   ]   .




                                           - [  G*   /.    ] [  [

G { f [dd]}  ´[d] G*         / .  f [d]   G*                             dd [G]


O ESTADO QUÂNTICO DE GRACELI


                                           - [  G*   /.    ] [  []


G* = DIMENSÕES DE GRACELI TAMBÉM ESTÁ RELACIONADO COM INTERAÇÕES DE ENERGIAS, QUÂNTICAS, RELATIVÍSTICAS, , E INTERAÇÕES DE CAMPOS.


o tensor energia-momento  é aquele de um campo eletromagnético,


ELETRODINÂMICA QUÂNTICA TENSORIAL DE GRACELI


*  ψ        [,]  / [ ]   .

*  ψ      /   / c / [ ] [

]  .




*  ψ    / [,][ ]   .





A equação de Klein-Gordon, às vezes chamada de equação de Klein-Fock-Gordon (ou ainda Klein-Gordon-Fock) pode ser deduzida de algumas maneiras diferentes.

Usando-se a definição relativística de energia




*  ψ        ] / ] /   / c  .

*  ψ      /   / ]/ [ ][[]  .




*  ψ    / [,]  [ ] []  .




Na relatividade especial, para expressar mais claramente o fato de que as equações de Maxwell no vácuo tomam a mesma forma em todos os sistemas de coordenadas inerciais, as equações de Maxwell são escritas em termos de quadrivetores e quadritensores na forma manifestamente covariante:

,

e

onde J é a quadricorrenteF é o tensor intensidade de campo ou tensor de Faraday, escrito como uma matriz 4 × 4 , e  é o quadrigradiente, tal que  é o operador d'Alembertiano. O α na primeira equação é implicitamente somado de acordo com a convenção da notação de Einstein. A primeira equação tensorial expressa as duas equações inomogêneas de Maxwell: lei de Gauss e a lei de Ampère com a correção de Maxwell. A segunda equação expressa as outras duas equações homogêneas: a lei de indução de Faraday e a ausência de monopólos magnéticos.

Mais explicitamente, J = (cρ, J), um vetor contravariante, em termos da densidade de carga ρ e a densidade de corrente J. Em termos de quadripotencial, como um vetor contravariante, , onde φ é o potencial elétrico e A é o potencial vetor magnético pelo calibre de Lorentz F pode ser expresso como:


Comentários

Mensagens populares deste blogue